

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

EXAS RUMENTS

Data sheet acquired from Harris Semiconductor SCHS062

CMOS **Binary Rate Multiplier**

High-Voltage Types (20-Volt Rating)

CD40898 is a low-power 4-bit digital rate multiplier that provides an output pulse rate that is the clock-input-pulse rate multiplied by 1/18 times the binary input. For example, when the binary input number is 13, there will be 13 output pulses for every 16 input pulses. This device may be used in conjunction with an up/down counter and control logic used to perform arithmetic operations (adds, subtract, divide, raise to a power), solve algebraic and differential equations, generate natural logarithms and trigometric functions, A/D and D/A conversions, and frequency division.

For words of more than 4 bits CD4089B devices may be cascaded in two different modes: an Add mode and a Multiply mode (see Figs. 14 and 15). In the Add mode some of the gaps left by the more significant unit at the count of 15 are filled in by the less significant units. For example, when two units are cascaded in the Add mode and programmed to 11 and 13, respectively, the more significant unit will have 11 output pulses for every 16 input pulses and the other unit will have 13 output pulses for every 256 input pulses for a total of

<u>11 13 189</u> 16 256 256

In the Multiply mode the fraction programmed into the first rate multiplier is multiplied by the fraction programmed into the second multiplier. Thus the output rate will be <u>11 13 143</u>

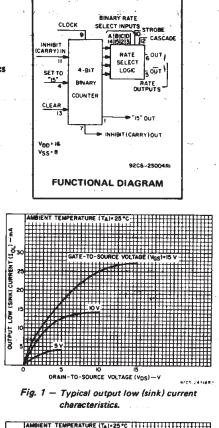
16 16 256

Features:

- Cascadable in multiples of 4-bits
- Set to "15" input and "15" detect output
- 100% tested for guiescent current at 20 V
- = 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =

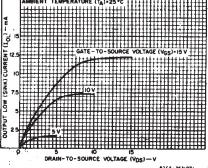
1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V

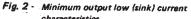
Meets all requirements of JEDEC Tentative Standard No. 138, "Standard Specifications for Description of 'B' Series CMOS Devices"


Applications:

- Numerical control
- Instrumentation
- Digital filtering
- Frequency synthesis

The CD4089B has an internal synchronous 4-bit counter which, together with one of the four binary input bits, produces pulse trains as shown in Fig. 2.


If more than one binary input bit is high, the resulting pulse train is a combination of the separate pulse trains as shown in Fig. 2.


The CD4089B types are supplied in 16-lead ceramic dual-in-line packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

3

COMMERCIAL CMOS **HIGH VOLTAGE ICs**

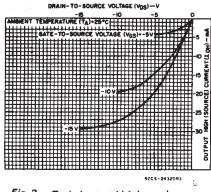


Fig. 3 — Typical output high (source) current characteristics.

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	
DO INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	· · ·
For T _A = -55°C to +100°C	
For T _A = +100°C to +125°C	Derate Linearity at 12mW/ ^O C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR T _A = FULL PACKAGE-TEMPERATURE:RANGE (All Package Ty	pes) 100mW
OPERATING-TEMPERATURE RANGE (TA)	
STORAGE TEMPERATURE RANGE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max	+265 ⁰ C

CD4089B Types

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}C$, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC		V _{DD}	LIŇ	UNITS	
		(V)	Min.	Max.	
Supply-Voltage Range (For T _A Temperature Range)	≠ Full Package-		3	18	V
Set or Clear Pulse Width,	tw	5 10 15	160 90 60	1 1 1	ns
Clock Pulse Width,	tw	5 10 15	330 170 100	1,1	ns
Clock Frequency,	^f CL	5 10 15	dc	1.2 2.5 3.5	MHz
Clock Rise or Fall Time,	^t rCL ^{or t} fCL	5, 10,15	-	15	μs
Inhibit In Setup Time,	^t SU	5 10 15	100 40 20	·	ns Ins
Inhibit In Removal Time,	^t REM	5 10 15	240 130 110	_ % * _	ns
Set Removal Time,	tREM	5 10 15	150 80 50		ris I
Clear Removal Time,	^t REM	5 10 15	60 40 30	_ 1	ns

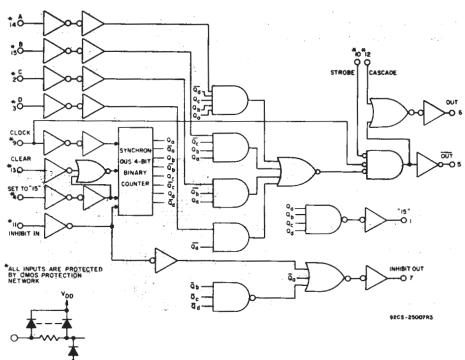


Fig. 4 — Logic diagram.

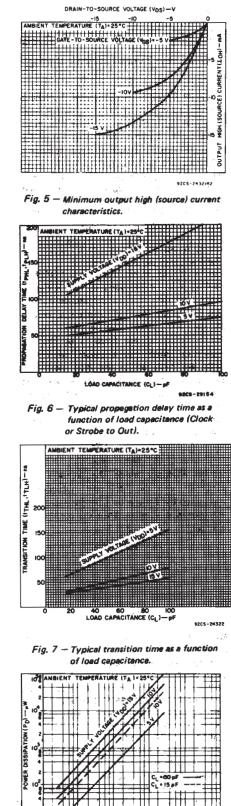


Fig. 8 – Typical dynamic power dissipation as a function of input frequency.

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; Input t_r, t_f = 20 ns, C_L = 50 pF, R₁ = 200 k Ω

CHARACTERISTIC	TES CONDIT			1 10 10 70			
		V _{DD} V	Min.	LIMITS Typ.	Max.		
Propagation Delay Time, tPHL, tPLH Clock to Out		5 10		110 55	220 110		
Clock or Strobe to Out		15 5 10 15		45 150 75 60	90 300 150 120	ns	
Clock to Inhibit Out High Level to Low Level		5 10 15	_ _ _	360 160 110	720 320 220	ns	
Low Level to High Level		5 10 15		250 100 75	500 200 150	ns	
Clear to Out		5 10 15		380 175 130	760 350 260	ns	
Clock to "9" or "15" Out		5 10 15	 	300 125 90	600 250 180	ns	
Cascade to Out		5 10 15		90 45 35	180 90 70	ns	
Inhibit In to Inhibit Out	:	5 10 15	1	160 75 55	320 150 110	ns	
Set to Out		5 10 15		330 150 110	660 300 220		
Transition Time, ^t THL ^{, t} TLH		5 10 15	_ _ _	100 50 40	200 100 80	ns	
Maximum Clock Frequency, f _{CL}		5 10 15	1.2 2.5 3.5	2.4 5 7		MHz	
Minimum Clock Pulse Width, t _W		5 10 15	-	165 85 50	330 170 100	ns	
Clock Rise or Fall Time, t _{rCL} , t _{fCL}		5 10 15			15 15 15	μs	
Minimum Set or Clear Pulse Width, t _W		5 10 15	1 1 1	80 45 30	160 90 60	ns	
Minimum Inhibit-In Setup Time, t _{SU}		5 10 15	-	50 20 10	100 40 20	ns	
Minimum Inhibit In Removal Time, ^t REM	:	5 10 15	-	120 65 55	240 130 110	ns	

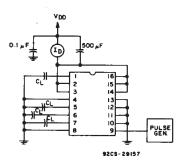


Fig. 9 - Dynamic power dissipation test circuit.

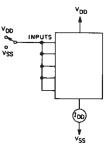


Fig. 10 - Quiescent device current test circuit.

92CS-27401R1

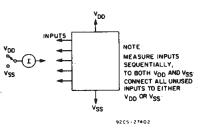


Fig. 11 — Input-current test circuit.

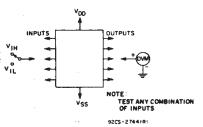
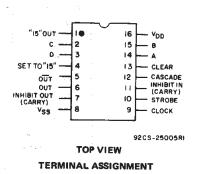



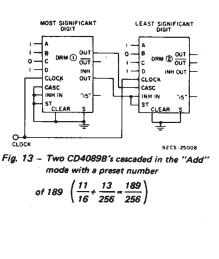
Fig. 12 - Input-voltage test circuit.

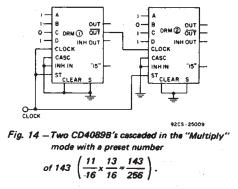
- \

. .-

CHARACTERISTIC	TEST CONDITIO		UNITS				
		V _{DD} V	LIMITS Min. Typ. Max.		Max.	1	
Minimum Set Removal Time, ^t REM		5 10 15		75 40 25	150 80 50	ns	
Minimum Clear Removal Time, ¹ REM		5 10 15	' 	30 20 15	60 40 30	ns	
Input Capacitance, C _{IN}	Any Input	-	i - *	5	7.5	pF	

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C (cont'd) Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

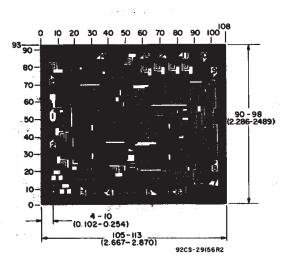

STATIC ELECTRICAL CHARACTERISTICS


-2

CHARAC- TERISTIC		DITIO		LIMITS AT INDICATED TEMPERATURES (°C)							NIT
	V ₀ (V)	V _{IN} (V)	V _{DD} (V)	55	40	+85	+125	Min.	+25 Typ.	Max.	S
•	_	0,5	5	5	5	150	150	-	0.04	5	
Quiescent Device	_	0,10	10	10	10 .	300	300	_	0.04	10	μA
Current,	-	0,15	15	20	20	600	600	-	0.04	20	~~~
DD Max.	-	0,20	20	100	100	3000	3000	-	0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
OL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-	1
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	mA
(Source)	2.5	0,5	5	2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
Current,	9.5	0,10	10	- 1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	1
¹ OH ^{Min.}	13.5	0,15	15	-4.2	-4	-2.8	- 2.4	-3.4	-6.8	-	
Output Voltage:	-	0,5	5		0		0	0.05			
Low Level,	-	0,10	10		0	.05			0	0.05	
VOL Max.	_	0,15	15		0	05	-	0	0.05	v	
Output	-	0,5	5		4	95		4.95	5	_	
Voltage: High-Level,	-	0,10	10	-	9	95		9.95	10	-	
VOH Min.	-	0,15	15		14	.95		14.95	15	-	
Input Low	0.5,4.5	-	5			1.5		-	-	1.5	
Voltage	1,9	_	10	•		3				3	1
VIL Max.	1.5,13.5	-	15			4		-		4] v
Input High	0.5,4.5	·	5			3.5		3.5	. –	-	
Voltage,	1,9	·	10			7		7	-	-	
V _{IH} Min.	1.5,13.5	_	15			11		11	-	-	
Input Current	-	0,18	18	±0.1	±0.1	±1	±1	-	±10-5	±0.1	μA

							TRU	JTH TA	BLE				
	INPUTS								OUTPL	JTS			
	Number of Pulses or Input Logic Level {0 = Low; 1 = High; X = Don't Care}								0	umber of utput Log = Low; F	ic Level	1	
D	С	В	Α	CLK	INH IN	STR	CAS	CLR	SET	OUT	OUT	INH OUT	"15" OUT
0	0	0	0	16	0	0	0	0	0	L	н	1	1
0	0	0	1	16	0	0	0	0	0	1	1	1	1
0	0	1	0	16	0	0	0	[0	0	2	2	1	1.
0	0	1	1	16	0	0	0	0	0	- 3	. 3	1.	1
0	1	0	0	16	0	0	0	0	0	4	4	1	1
0	1	0	1	16	0	0	0	0	0	5	5	1	1
0	1	1	0	16	0	0	0	0	0	6	6	1	1
0	1	1	1	16	0	0	0	0	0	7	7	1	1
1	0	0	0	16	0	0	0	0	0	8	8	1	1
1	0	0	1	16	0	0	0	0	0	9	9	1	1
1	0	1	0	16	0	. 0	0	0	0	10	10	1	1
1	0	1	1	16	0	0	0	0	0	11	11	. 1	1
1	1	0	0	16	0	0	0	0	0	12	12	1	1
1	1	0	1	16	0	0	0	0	0	13	13	1	1
1	1	1	0	16	0	0	0	0	0	14	14	1	1
1	1	1	1	16	0	0	0	0	0	15	15	1	1
x	x	x	x	16	1	0	~ 0	0	0	t	†	н	+
X	x	х	x	16	0	1	0	0	0	L	н	1	1
X	х	х	х	16	0	0	1	0	0	н	*	1	1
1	х	х	х	16	0	0	0	1	0	16	16	н	L
0	х	х	X	16	0	0	0	1	0	L	н	н	L
X	х	Х	X	16	0 ·	0	0	x	1	L	н	L	н

TOUTH TADLE



COMMERCIAL CMOS HIGH VOLTAGE ICs

3

* Output same as the first 16 lines of this truth table (depending on values of A, B, C, D).

[†] Depends on internal state of counter.

Dimensions and Pad Layout for CD4089BH

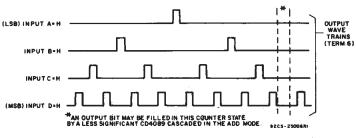


Fig. 15 - Timing diagram.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated